Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

#### Jiyong Yao and James A. Ibers\*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

#### **Key indicators**

Single-crystal X-ray study T = 153 K Mean  $\sigma$ (Se–Zn) = 0.001 Å R factor = 0.025 wR factor = 0.066 Data-to-parameter ratio = 29.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Dicaesium dibismuth zinc pentaselenide,  $Cs_2Bi_2ZnSe_5$ , crystallizes in the orthorhombic space group *Pnma* and is isostructural with  $Cs_2Bi_2ZnS_5$ . The structure consists of twodimensional [ $Bi_2ZnSe_5$ ] layers built from  $BiSe_6$  octahedra and  $ZnS_4$  tetrahedra. The layers are separated by Cs atoms. Received 19 July 2004 Accepted 28 July 2004 Online 7 August 2004

### Comment

A number of quaternary bismuth transition-metal chalcogenides have been prepared by the reactive flux method (Sunshine *et al.*, 1987). Examples include  $ABi_2CuS_4$  (A = Kand Cs; Yang *et al.*, 2000; Huang *et al.*, 2001), RbBi<sub>2.66</sub>CuSe<sub>5</sub> (Huang *et al.*, 2001),  $A_3Bi_5Cu_2S_{10}$  (A = Rb and Cs; Yang *et al.*, 2000; Huang *et al.*, 2001), CsBiAg<sub>2</sub>S<sub>3</sub> (Huang *et al.*, 2001) and Cs<sub>2</sub>Bi<sub>2</sub>MS<sub>5</sub> (M = Zn, Cd and Mn; Huang *et al.*, 2003). These compounds crystallize in a variety of structure types that include two-dimensional layered structures and three-dimensional tunnel structures. We report here the structure of Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub>, a new member of the bismuth transition-metal chalcogenide family.

Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub>, which has the Cs<sub>2</sub>Bi<sub>2</sub>ZnS<sub>5</sub> structure type (Huang et al., 2003), crystallizes in space group Pnma of the orthorhombic system. The atoms in the asymmetric unit (Fig. 1) are all on sites of symmetry m. The structure of Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub> (Fig. 2) comprises two-dimensional [Bi<sub>2</sub>ZnSe<sub>5</sub>] layers separated by Cs atoms. Each Cs1 atom is coordinated by an octahedron of six Se atoms, whereas each Cs2 atom is coordinated by a monocapped trigonal prism of seven Se atoms. The Cs-Se separations range from 3.5060 (9) to 3.6777(8) Å, comparable with those of 3.586(1)-3.8387(9) Å in CsYbZnSe<sub>3</sub> (Mitchell et al., 2002). Each Bi1 atom is coordinated by a slightly distorted octahedron of six Se atoms, with Bi1-Se bond distances ranging from 2.8523 (8) to 3.0488 (9) A. Each Bi2 atom is coordinated by a more severely distorted octahedron of six Se atoms, with Bi2-Se bond lengths ranging from 2.7418 (8) to 3.3416 (9) Å. Similar



A view of the asymmetric unit of Cs2Bi2ZnSe5, with displacement

# ${\rm \textcircled{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

ellipsoids drawn at the 90% probability level.



#### Figure 2 The structure of Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub>, viewed down [010].



The structure of the two-dimensional [Bi<sub>2</sub>ZnSe<sub>5</sub>] layer in Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub>.

coordination geometries, which result from the stereochemical activity of the 6s<sup>2</sup> lone pair of electrons of Bi<sup>3+</sup>, have often been observed in bismuth chalcogenides, for example in BaBi<sub>2</sub>Se<sub>4</sub> (Iordanidis et al., 2001) and CsBi<sub>3</sub>Se<sub>5</sub> (Iordanidis et al., 2003). Each Zn atom is coordinated by a tetrahedron of four Se atoms, with Zn-Se distances ranging from 2.471 (1) to 2.5254 (6) Å, similar to those of 2.434 (1)–2.529 (1) Å in CsYbZnSe<sub>3</sub> (Mitchell et al., 2002).

The two-dimensional [Bi<sub>2</sub>ZnSe<sub>5</sub>] layer is constructed from BiSe<sub>6</sub> octahedra and ZnSe<sub>4</sub> tetrahedra (Fig. 3). The octahedra share corners and vertices to form a two-dimensional [Bi<sub>2</sub>Se<sub>5</sub>] layer. These layers of octahedra are slightly buckled, giving rise to tetrahedral sites that are occupied by Zn atoms. Each ZnSe<sub>4</sub> tetrahedron links with four BiSe<sub>6</sub> octahedra by edgesharing to form the two-dimensional [Bi<sub>2</sub>ZnSe<sub>5</sub>] layer.

## **Experimental**

Cs<sub>2</sub>Bi<sub>2</sub>ZnSe<sub>5</sub> was obtained as black needles from a solid-state reaction of Cs<sub>2</sub>Se<sub>3</sub> (0.6 mmol), Bi (Johnson Matthey, 99.99%, 1.0 mmol), Zn (Johnson Matthey, 99.99%, 0.5 mmol) and Se (Aldrich, 99.5%, 1.0 mmol). The  $Cs_2Se_3$  reactive flux was prepared by the stoichiometric reaction of Cs (Aldrich, 99.5%) and Se in liquid NH<sub>3</sub>. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was sealed under a  $10^{-4}$  Torr atmosphere (1 Torr = 133.322 Pa) and then placed in a computercontrolled furnace. The sample was heated to 973 K over a period of 25 h, kept at 973 K for 84 h, slowly cooled at 6 K  $h^{-1}$  to 373 K and then cooled rapidly to room temperature.

#### Crystal data

| Cs <sub>2</sub> Bi <sub>2</sub> ZnSe <sub>5</sub> | Mo $K\alpha$ radiation                      |  |  |
|---------------------------------------------------|---------------------------------------------|--|--|
| $M_r = 1143.95$                                   | Cell parameters from 5155                   |  |  |
| Orthorhombic, Pnma                                | reflections                                 |  |  |
| a = 16.374 (2) Å                                  | $\theta = 1.7 - 28.9^{\circ}$               |  |  |
| b = 4.2382(5)  Å                                  | $\mu = 48.18 \text{ mm}^{-1}$               |  |  |
| c = 18.780 (2) Å                                  | T = 153 (2) K                               |  |  |
| V = 1303.2 (3) Å <sup>3</sup>                     | Needle, black                               |  |  |
| Z = 4                                             | $0.42 \times 0.050 \times 0.026 \text{ mm}$ |  |  |
| $D_x = 5.830 \text{ Mg m}^{-3}$                   |                                             |  |  |

### Data collection

Bruker SMART 1000 CCD 1853 independent reflections diffractometer 1729 reflections with  $I > 2\sigma(I)$  $\omega$  scans  $R_{\rm int} = 0.048$  $\theta_{\rm max} = 28.9^{\circ}$ Absorption correction: numerical  $h = -21 \rightarrow 21$ face indexed (SHELXTL; Sheldrick, 2003)  $k = -5 \rightarrow 5$  $T_{\rm min}=0.022,\ T_{\rm max}=0.298$  $l = -24 \rightarrow 24$ 15 257 measured reflections

#### Refinement

| Refinement on $F^2$             | <i>w</i> =            |
|---------------------------------|-----------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.025$ | w                     |
| $wR(F^2) = 0.066$               | $(\Delta/c$           |
| S = 1.15                        | $\Delta \rho_{\rm r}$ |
| 1853 reflections                | $\Delta \rho_{\rm r}$ |
| 62 parameters                   | Exti                  |
| •                               | Ext                   |

# $1/[\sigma^2(F_o^2) + (0.04P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $\sigma)_{\rm max} = 0.001$ <sub>max</sub> = 2.93 e Å

 $_{\rm nin} = -2.38 \text{ e} \text{ Å}^{-3}$ inction correction: SHELXL97 Extinction coefficient: 0.00038 (5)

# Table 1

Selected geometric parameters (Å, °).

| Bi1-Se4                                 | 2.8523 (8)  | Bi2-Se4 <sup>ii</sup>                     | 3.0129 (6)   |
|-----------------------------------------|-------------|-------------------------------------------|--------------|
| Bi1-Se5 <sup>i</sup>                    | 2.9189 (6)  | Bi2-Se3 <sup>iii</sup>                    | 3.3416 (9)   |
| Bi1-Se1 <sup>i</sup>                    | 2.9614 (6)  | Zn-Se2                                    | 2.4710 (12)  |
| Bi1-Se3                                 | 3.0488 (9)  | Zn-Se5                                    | 2.5035 (12)  |
| Bi2-Se1                                 | 2.7418 (8)  | Zn-Se3 <sup>ii</sup>                      | 2.5254 (6)   |
| Bi2-Se2 <sup>ii</sup>                   | 2.9114 (6)  |                                           |              |
| Se4-Bi1-Se5 <sup>i</sup>                | 95.323 (19) | Se1-Bi2-Se4 <sup>ii</sup>                 | 91.44 (2)    |
| Se5 <sup>i</sup> -Bi1-Se5 <sup>iv</sup> | 93.10 (2)   | Se2 <sup>ii</sup> -Bi2-Se4 <sup>ii</sup>  | 88.554 (17)  |
| Se4-Bi1-Se1 <sup>i</sup>                | 90.36 (2)   | Se2 <sup>v</sup> -Bi2-Se4 <sup>ii</sup>   | 177.022 (19) |
| Se5 <sup>i</sup> -Bi1-Se1 <sup>i</sup>  | 87.472 (17) | Se4v-Bi2-Se4ii                            | 89.39 (2)    |
| Se5 <sup>iv</sup> -Bi1-Se1 <sup>i</sup> | 174.21 (2)  | Se1-Bi2-Se3 <sup>iii</sup>                | 167.58 (2)   |
| Se1 <sup>iv</sup> -Bi1-Se1 <sup>i</sup> | 91.38 (2)   | Se2 <sup>ii</sup> -Bi2-Se3 <sup>iii</sup> | 80.765 (18)  |
| Se4-Bi1-Se3                             | 179.34 (2)  | Se4 <sup>ii</sup> -Bi2-Se3 <sup>iii</sup> | 97.366 (18)  |
| Se5 <sup>i</sup> -Bi1-Se3               | 85.129 (19) | Se2-Zn-Se5                                | 111.37 (4)   |
| Se1 <sup>i</sup> -Bi1-Se3               | 89.181 (19) | Se2-Zn-Se3 <sup>ii</sup>                  | 108.87 (3)   |
| Se1-Bi2-Se2 <sup>ii</sup>               | 90.77 (2)   | Se5-Zn-Se3 <sup>ii</sup>                  | 106.82 (3)   |
| Se2 <sup>ii</sup> -Bi2-Se2 <sup>v</sup> | 93.42 (2)   | Se3 <sup>ii</sup> -Zn-Se3 <sup>v</sup>    | 114.10 (4)   |
|                                         |             |                                           |              |

Symmetry codes: (i)  $\frac{1}{2} - x$ , 1 - y,  $\frac{1}{2} + z$ ; (ii)  $\frac{1}{2} - x$ , 1 - y,  $z - \frac{1}{2}$ ; (iii) x, y, z - 1; (iv)  $\frac{1}{2} - x, -y, \frac{1}{2} + z;$  (v)  $\frac{1}{2} - x, -y, z - \frac{1}{2}$ .

The highest residual electron density is 0.02 Å from the Bi1 site. The deepest hole is 0.81 Å from this same site.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the MRSEC program of the US National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

#### References

- Bruker (2003). *SMART* (Version 5.054) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, F. Q., Mitchell, K. & Ibers, J. A. (2001). J. Alloys Compd. 325, 84–90. Huang, F. Q., Somers, R. C., McFarland, A. D., Van Duyne, R. P. & Ibers, J. A.
- (2003). J. Solid State Chem. 174, 334–341.

- Iordanidis, L., Bilc, D., Mahanti, S. D. & Kanatzidis, M. G. (2003). J. Am. Chem. Soc. 125, 13741–13752.
- Iordanidis, L., Brazis, P. W., Kyratsi, T., Ireland, J., Lane, M., Kannewurf, C. R., Chen, W., Dyck, J. S., Uher, C., Ghelani, N. A., Hogan, T. & Kanatzidis, M. G. (2001). *Chem. Mater.* 13, 622–633.
- Mitchell, K., Haynes, C. L., McFarland, A. D., Van Duyne, R. P. & Ibers, J. A. (2002). *Inorg. Chem.* **41**, 1199–1204.
- Sheldrick, G. M. (2003). SHELXTL for DOS/Windows/NT. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202– 6204.
- Yang, Y., Brazis, P., Kannewurf, C. R. & Ibers, J. A. (2000). J. Solid State Chem. 155, 243–249.